Today PNC Wealth Management announced its Christmas Price Index. This is the cost of buying all the gifts in the song The Twelve Days of Christmas. All 364 of them.
Where’d that number come from? Well, there is one on the first day: a partridge in a pear tree. There are three gifts on the second day: two turtle doves, and a partridge in a pear tree. And so on up until 78 gifts on the twelfth day: twelve drummers drumming, eleven pipers piping, and all the way on down. The total number of gifts bought is 1 + 3 + 6 + … + 78 = 364, which is, coincidentally, one less than the number of days in the year. (The number 365, being just the nearest integer to a ratio of two times, can’t have any number-theoretic significance.)
But what if Christmas lasted n days instead of three? What then?
The identity is a special case of
$
which in turn is a special case of the “hockey-stick identity”
$
or in more compact notation
.
Let’s prove this identity. We want to choose elements from the set
. We can do this by first choosing the largest element, and then choosing the $k$ smaller elements. If we choose
to be the largest element, there will be
ways to pick the
smaller elements from
; summing over the possible values of
gives the answer.
But a different way of counting is suggested by observing that over the 364 days, the true love receives:
partridges-in-pair-trees;
turtle doves;
french hens;
- …
drummers drumming
and so we get the identity
.
If there’s anything right with the world, this ought to be a special case of
and why should this be? Let’s write this as
where the reason for the somewhat strange indexing will be apparent shortly.
Let’s count subsets of the set of size 3. We can write each such subset as
where we require
. > Then we’ll count these subsets according to the difference
. To construct such a set with
we must:
- choose
.
must be between
and
inclusive, so there are
possible choices.
- choose
.
must be between
and
exclusive, so there are
possible choices.
At this point is fixed. So there are
ways to choose the 3-set with
; summing over the possible values of
gives the answer.
(Is there a natural generaliztion of this later identity that counts sets of sizes 4 or larger?)
So by counting sets of size 3 in two different ways, we’ve made combinatorial proofs of two different identities, both with a binomial coefficient with “lower number” 3.
The 364-gift total has been observed in various places; people who have looked at the math instead of just adding up the numbers include Murray Bourne and Brent Yorgey. And Knuth observed that the song itself has a space complexity of .